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1 Proofs of the main results from the lecture

Let’s recall the definition from one of the previous lectures.

Definition 1.1. Function f(a1, a2, . . . , am) is called multilinear if it is linear in every argu-

ment, i.e. for any i

f(a1, . . . , a
′
i + a′′i , . . . , am) = f(a1, . . . , a

′
i, . . . , am) + f(a1, . . . , a

′′
i , . . . , am)

f(a1, . . . , λai, . . . , am) = λf(a1, . . . , ai, . . . , am).

Definition 1.2. Multilinear function f(a1, a2, . . . , am) is called alternating if it changes the

sign after interchanging any 2 arguments, i.e. for any i and j

f(a1, . . . , ai, . . . , aj, . . . , am) = −f(a1, . . . , aj, . . . , ai, . . . , am).

If f is alternating, then it is equal to 0 if any 2 arguments are equal. It is true, because if

we interchange these 2 arguments, the function will not change, but from the other hand, it

should change its sign. So, it is equal to 0.

Now we’re able to formulate the main result about alternating multilinear functions.

Theorem 1.3. For any c ∈ R in the vector space Rn there exists the unique alternating multi-

linear function f , such that

f(e1, e2, . . . , en) = c (1)

(where ei’s are rows with 1 on i-th place, and 0’s on all other places). Moreover, this function

is equal to

f(a1, a2, . . . , an) = c ·
∑

all permutations of n elements σ

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n) (2)

= c ·
∑

(k1,k2,...,kn)

sgn(k1, k2, . . . , kn)a1k1a2k2 · · · ankn , (3)

where aik is the k-th component of the row ai, and the summation is over all permutations of

numbers from 1 to n.
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Proof. 1. Let f be an alternating multilinear function, such that f(e1, . . . , en) = c. Then

f(a1, a2, . . . , an) = f

(∑

k1

a1k1ek1 ,
∑

k2

a2k2ek2 , . . . ,
∑

kn

anknekn

)

=
∑

k1,k2,...,kn

a1k1a2k2 · · · anknf(e1, e2, . . . , en).

Since f is alternating, if any 2 numbers from k1, k2, . . . , kn are equal, then f(ek1 , ek2 , . . . , ekn) =

0. If all of them are different, then

f(ek1 , ek2 , . . . , ekn) = c sgn(k1, k2, . . . , kn).

Let’s prove it. If this equality is true for some permutation, then it is true for any

other permutation which we can get from the initial by transposition of any 2 elements

(since after transposition both left-hand side and right-hand side change signs). But this

equality is true for identity permutation, and since it is possible to get any permutation

from identity, then this equality is true for all permutations. So, we get that f satisfies

the expression (3). So, if f satisfying the given conditions exists, then it has the form (3)

and so it is unique.

2. Now we’ll prove that the function f given by the formula (3) is alternating multilinear,

and satisfy the condition (1). Linearity by any argument is obvious, since for any i the

equality (3) can be written as

f(a1, a2, . . . , an) =
∑

j

aijuj,

where uj’s do not depend on ai. The condition (1) also holds, since in the expression for

f(e1, e2, . . . , en) all summands except the term, corresponding to the identity permutation

are equal to 0, and the term, corresponding to the identity permutation is equal to 1.

Now we should check that this function is alternating.

Let we interchange arguments ai and aj. Then all permutations can be divided into pairs

different only by interchanging ki and kj. Terms from these pairs are included in the

expression (3) with different signs (since one of them is different from the other by one

transposition). After interchanging ai and aj they change their roles, and so the whole

expression changes its sign.

If c = 1 we will denote such function by det.

Definition 1.4. The determinant of the square n× n-matrix A = (aij) is

det A = det(a1, a2, . . . , an),

where a1, a2, . . . , an are rows of A.
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Corollary 1.5. If f is an arbitrary alternating multilinear function of rows of the matrix, then

f(A) = f(I) det A,

where I is the identity matrix.

Moreover, we proved that det A> = det A, so we have the following corollary:

Corollary 1.6. The determinant of the matrix is the alternating multilinear function of its

columns.

Now we’re able to prove the main theorems about properties of determinants.

Theorem 1.7 (Determinant of the product). For any square matrices A and B

det(AB) = det A det B.

Proof. It’s easy to see that rows c1, c2, . . . , cn of the matrix AB can be obtained from the rows

a1, . . . , an of the matrix A by multiplication by B:

ci = aiB i = 1, . . . , n.

So, if the matrix B is fixed, then the determinant of AB is the alternating multilinear function

of the rows of A: let, without loss of generality a1 = a′1 + a′′1, where a′1 and a′′1 are arbitrary

rows. Then

det(AB) = det(a1B, a2B, . . . , anB) = det((a′1 + a′′1)B, a2B, . . . , anB)

= det(a′1B + a′′1B, a2B, . . . , anB)

= det(a′1B, a2B, . . . , anB) + det(a′′1B, a2B, . . . , anB).

Other properties can be checked in the same manner. Thus, if B is fixed, det AB is the

alternating multilinear function. So, by the corollary 1.5 we have:

det AB = det IB · det A = det B · det A = det A · det B.

Theorem 1.8 (The determinant of the block matrix). Let

A =

(
B D

0 C

)
,

where B and C are square matrices. Then

det A = det B det C.
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Proof. If matrices B and D are fixed, then the determinant of A is the alternating multilinear

function of its last rows, and so it is the alternating multilinear function of rows of the matrix

C. Thus, by the corollary 1.5

det A = det

(
B D

0 I

)
· det C.

If the matrix D is fixed, then the first multiplicand is the alternating multilinear function of

rows of B, and so

det

(
B D

0 I

)
= det

(
I D

0 I

)
· det B = det B

(because

(
I D

0 I

)
is triangular with 1’s on its diagonal). So,

det A = det B det C
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